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INTRODUCTION 

As artificial intelligence (AI) systems continue to scale, they face increasing computational 
bottlenecks, particularly due to the separation of compute and memory in traditional von Neumann 
computing systems. The resulting latency and energy overheads in data movement [1] significantly 
hinder the efficiency of neural network inference, where throughput and energy efficiency are 
critical [2]. 

Neuromorphic systems sidestep these problems by co-locating processing and memory, often 
through hardware elements that natively emulate the behavior of neurons and synapses [3]. While 
several electronic and memristive technologies have been explored for this purpose, they have not 
displayed significant advantages over current conventional computing architectures for large-scale 
simulation and implementing small-scale, independent cognitive agents [4]. This motivates the 
continued search for alternative physical platforms for neuromorphic hardware. 

Magnonics offers a promising alternative for implementing neuromorphic hardware by 
substituting electrons with magnons, the quanta of spin waves, as information carriers [5]. Because 
magnons propagate without charge motion, they can transport and process signals in insulators 
with minimal energy loss from Joule heating [6,7]. Crucially, their wave nature naturally supports 
interference, superposition, and frequency multiplexing [8], making magnons well-suited for 
implementing neuronal operations such as signal integration and nonlinear activation. 

In this context, magnonic neurons — nanoscale structures that exploit spin-wave dynamics to 
emulate neuronal behavior — represent a compelling building block for non-von Neumann 
computing architectures. Such neurons can perform localized computations and support in-
memory processing, offering a pathway toward highly compact and energy-efficient neuromorphic 
processors.  

This work presents the design of a Leaky Integrate-and-Fire (LIF) magnonic neuron capable of 
performing key neuronal operations of integration, thresholding, and activation using nonlinear 
magnonic components. Device geometry was optimized using inverse design through direct binary 
search (DBS), enabling targeted control of spin-wave interference. Micromagnetic simulations of 
the Landau-Lifshitz-Gilbert (LLG) equation indicate that the structures exhibit behaviors 
consistent with neuronal operations, such as localized energy accumulation and nonlinear response, 
highlighting the feasibility of spin-wave-based neuromorphic elements and laying the groundwork 
for future, fully functional designs. 

MATERIALS AND METHODS 

Neuron Structure 
The magnonic neuron, which has a structure inspired by an optical ring resonator, physically 
implements a Leaky Integrate-and-Fire (LIF) neuronal model [9]. In this framework, the ring 
resonator serves as the integration node, where spin waves undergo constructive interference and 
lead to the amplification of internal spin-wave amplitude. The intrinsic magnetic damping and 
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coupling losses represent the ‘leaky’ part of the neuron, where energy dissipates if not replenished 
by sufficient input. The directional coupler acts as the activation function of the magnonic neuron, 
directing energy away from the output waveguide until sufficient accumulated energy crosses the 
critical threshold, at which point it ‘switches’ and energy remains in the output waveguide [10]. 

However, a ring resonator alone cannot sustain energy build-up indefinitely, since spin waves 
readily leak into the output waveguide as well as due to coupling and damping losses. Therefore, 
an optimized design must minimize spin-wave leakage while still enabling sufficient energy 
accumulation for neuronal activation. 

 

 
 

Figure 1. Proposed structures and parameters for inverse-design. (a) The proposed structure 
of the inverse-design magnonic neuron. A magnetic field is excited in the input waveguide which 
travels through the design region and to the output waveguide. The design region, initially a YIG 
ring with width 150 nm, was set at δ = 5 nm away from the input and output waveguides while 
the coupler waveguide was set at Δ = 50 nm away from the output waveguide. A 7.32 μm 
directional coupler was set at 0.58 μm away from the design region to prevent energy transfer. 
(b) Structure used for determining dispersion curves and mode separation, with waveguide 
thickness t = 50 nm, width w = 100 nm, and out-of-plane magnetic field Bext = 300 mT. Spin 
waves were excited over a 40 nm-wide excitation region. (c) Simplified coupler structure to 
compare spin-wave routing against excitation field strength b0, with one detector in the coupler 
away from the damping region and another in the input waveguide after the coupler, away from 
the damping region. 

Figure 1(a) shows the proposed neuron structure. Micromagnetic simulation was performed using 
the MuMax3 micromagnetic package [11] with the following YIG parameters [12]: magnetic 
saturation 𝑀! = 1.4 × 10"	𝐴	𝑚#$ , exchange constant 𝐴 = 3.5 × 10#$%	𝐽	𝑚#$  and Gilbert 
damping 𝛼 = 2 × 10#&. The Gilbert damping at the ends of the input and output waveguides and 
the coupler waveguide were exponentially increased to a value of 0.5 to minimize reflections.  
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Frequency Determination 
To design a functional magnonic neuron, it is imperative to know the frequency for optimal energy 
transfer (i.e., resonance) and how it shifts with power or magnetic field. This allows tuning the 
geometry, bias field, and input power to achieve desired coupling or decoupling behavior. This 
desired frequency, known as the resonance frequency, generates spin waves most efficiently [13].  

Finding resonant frequencies required plotting transmission T as a function of frequency f, where 
T is defined by the ratio of the spin-wave intensities in the input waveguide behind and in front of 
the ring. A sinc pulse was used to excite a broadband signal ranging from 0 GHz to 10 GHz, and a 
Fast Fourier Transform (FFT) was done at the respective regions to calculate the transmission ratio.  

In addition to finding a frequency where the most energy enters the ring, it is also crucial to know 
the frequency where high amounts of energy enter the output waveguide. Hence, a FFT was also 
done on the output waveguide under the same excitation, and an FFT magnitude against frequency 
f graph is plotted.  

Non-linear Functionality 
When parallel identical waveguides are coupled together in proximity, their symmetry ensures that 
spin wave energy is completely transferred from one to another within a certain distance known 
as the coupling length [11]. In the proposed magnonic neuron, this directional coupler allows the 
non-linear switching of spin waves which directly influences its activation behavior. 

The coupling length, corresponding to the physical length of the coupler waveguide in Figure 1(c), 
is given by 

𝐿' =
𝜋

|𝑘! − 𝑘(!|
=
𝜋
Δ𝑘
	 (1) 

where 𝑘!  and 𝑘(!  are the wavenumbers of the symmetric and antisymmetric spin-wave modes 
respectively.  These mode wavenumbers were taken from the spectral map in Figure 3(a), obtained 
by applying a spatial FFT to the structure in Figure 1(b) under sinc-pulse excitation at 6.7 GHz. 

Whether non-linear functionality can take place is dependent by the relative nonlinearity parameter 
𝜂 = |𝑇𝑎)% 4Ω⁄ |  where 𝑇  denotes the nonlinear frequency shift coefficient, Ω  the coupling 
efficiency and 𝑎)  the excitation spin wave envelope amplitude, with Ω assumed positive [10]. 
Nonlinear behavior arises when 𝜂 > 1, i.e. |𝑇𝑎)%| > 4Ω. 

To ensure stable switching behavior, the group velocities of the symmetric and antisymmetric 
modes 𝑑𝑓 𝑑𝑘!⁄  and 𝑑𝑓 𝑑𝑘(!⁄  must be approximately equal to eliminate k-dependency (i.e. 𝐿' 
remains insensitive to changes in input power). This means that waveguide separation 𝛿 had to be 
adjusted such that Ω is reduced and the symmetric and antisymmetric dispersion curves at 6.7 GHz 
are parallel. 
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Quantifying spin-wave routing as a function of input power is necessary to determine the activation 
function of the neuron. Excitation field 𝑏) was increased incrementally from 3 mT to 60 mT in the 
structure shown in Figure 1(c) while average power at each waveguide (𝑃$ and 𝑃%) was taken at 
the detection regions denoted in red and blue. The final 50% of each simulation timeframe was 
taken to be averaged to eliminate latency in power due to varying distances from the excitation 
source. 

Direct Binary Search (DBS) Optimization 

Using DBS to inverse-design magnonic devices has been described prior in literature [14,15]. In 
short, a YIG ring geometry was loaded before each cell is flipped (air to YIG and vice versa) in a 
random order. After each flip, the simulation is run and a reward function determines a score. If 
the score exceeds the previous score by a certain threshold, the flip is kept and reversed otherwise. 
Once all the cells are exhausted, a new order is determined and the process is repeated until no 
further improvements are made, eventually converging to an optimized structure. 

However, this method has its own flaws: local minima convergence and the inability to make 
coarse and fine improvements. We updated DBS to start with larger cell flips (100x100 nm cell 
size) before cell size decays to 40x40 nm and then 20x20 nm. This allows for coarse improvements 
at the start, before finer improvements tune the geometry to better support energy buildup. 

Other than requiring improvements in output power, properties such as latency [16] (i.e. time-to-
fire once sufficient energy has accumulated) and energy efficiency contribute to its overall 
performance. A simple reward function 𝑅 was devised that accounts for such factors and improves 
them during inverse design: 

𝑅 = D 𝑃*+,(𝑡)𝑑𝑡
,!"#

)
	 (2) 

where 𝑡!-.  is the total simulation time and 𝑃*+,  the output power measured at the output 
waveguide before the nonlinear coupler. This specific reward function targets the LIF behavior of 
the neuron. By maximizing the time-integrated power, the algorithm prioritizes geometries that 
facilitate constructive interference and rapid energy accumulation, acting as a high-efficiency 
integration node. 

The DBS optimization of the ring resonator was conducted at a field strength of 10 mT. This 
baseline ensures the system remains within the linear propagation regime, where phase-coherent 
constructive interference, the physical basis for 'leaking' and 'integrating', is maximized without 
the interference of nonlinear frequency shifts. 

Simulations were run on a workstation with an Intel Core i9-10900 CPU and an NVIDIA GeForce 
RTX 3070 GPU. 
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RESULTS 

  
Figure 2. Spin-wave propagation behavior. (a) Transmission behavior from input waveguide to 
ring. (b) Spin wave intensities in output waveguide. The frequency to excite the neuron with was 
required to have 0%, or close to 0%, transmission, non-zero FFT Power, and be well above 
ferromagnetic resonance (FMR), determined by plotting frequency f as a function of wavenumber k 
and found to be around 6.0 GHz. The excitation frequency of the neuron was determined to be 6.7 
GHz.   

 

  
Figure 3. 2D spatiotemporal spectral maps demonstrating k-independent nonlinearity arising 
from parallel symmetric and antisymmetric modes. Color indicates the logarithm of spectral 
intensity (arb. units). (a) Spectral map of a sinc-pulse excitation with waveguide separation Δ = 
50 nm. (b) Spectral map of propagating spin waves with fixed frequency 6.7 GHz at low power 
(b0 = 1 mT), with symmetric and antisymmetric spin-wave modes marked out. The resulting 
nearly parallel symmetric and antisymmetric dispersion curves at 6.7GHz enables robust 
nonlinear operation. 
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Figure 4. Nonlinear spin-wave routing in the directional coupler at 6.7 GHz. (a) Percentage 
of spin waves remaining in the excitation waveguide as a function of input excitation field 
strength, b0, with a sharp transition between 26 mT and 33 mT. (b) Spin-wave routing at b0 = 3 
mT, 27 mT and 39 mT, demonstrating near-complete energy transfer at low excitation and 
decoupling above the nonlinear threshold. 

 

  
Figure 5. Progression of DBS algorithm. (a) Improvements in output score of DBS across 
iterations, with best-case resonator geometry located at the bottom right. (b) Improvements in 
area-averaged, best-case output amplitude ⟨M⟂⟩ immediately after the resonator across 
iterations. Notably, DBS has improved output amplitude to be greater than input amplitude but 
still falls short of the required amplitude for the neuron to ‘fire’. 

DISCUSSION 

The results demonstrate a proof-of-concept implementation of the integration and leak components 
of a LIF neuron, as well as a nonlinear activation mechanism. However, fully self-contained firing 
remains challenging, due to energy accumulation limits in nanoscale magnonic structures. 

Functional Integration and Algorithmic Success 
The primary success of this design lies in the implementation of the ring resonator as an integration 
node. The DBS optimization was crucial in improving steady-state output amplitude ⟨𝑀/⟩, that 
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exceeded baseline input excitation level. This is a critical milestone in confirming that inverse-
design can overcome intrinsic magnetic damping to achieve a net gain in signal output power 
through spatial optimization — effectively implementing the ‘thresholding’ function of a neuron. 

Analysis of Firing Threshold Gap 
Despite the vast improvements made by DBS through inverse design, the peak amplitude remained 
below the critical threshold required to trigger the non-linear directional coupler. This current 
shortfall can be attributed to the high energy barrier required to reach this non-linear regime. The 
high damping constant (𝛼) inherent to the simulated thin-film YIG acts as a continuous drain on 
the system’s energy. Furthermore, the search space for optimization is computationally and time 
intensive. It was likely that the global maximum for energy accumulation was not reached within 
a reasonable timeframe, suggesting that with more intensive computational resources, different 
optimization strategies or a higher Q-factor resonator, the firing threshold could be met. 

A higher input power could also improve output power. However, this is restricted to the linear 
regime, which 10 mT safely lies in. When a higher input power is used, it risks operating in the 
nonlinear regime, which may cause decoupling effects that shifts operating frequency which 
affects energy buildup. Therefore, device geometry must be optimized with nonlinear-aware 
algorithms that can compensate for such effects. 

Fabrication Feasibility and Sensitivity 
The optimized geometry features a minimum separation of 5 nm between the ring resonator and 
the waveguides. Although this small gap enhances coupling efficiency, it presents significant 
fabrication challenges due to lithographic resolution limits and edge roughness in nanofabrication 
processes [17] that could degrade interference patterns [18]. Experimental realization may 
therefore require design modifications that trade off coupling strength for improved 
manufacturability through increasing the gap or potentially compensating for losses through 
materials with lower damping such as Liquid Phase Epitaxy (LPE) grown YIG [12]. 

CONCLUSION AND FUTURE WORK 

This study validates that inverse-designed magnonic structures can emulate the complex, time-
dependent behavior of biological Leaky Integrate-and-Fire (LIF) neurons, crucial in implementing 
neuromorphic hardware. At the same time, the use of spin waves offers a potential energy 
efficiency gains over CMOS-based LIF neurons, as integration occurs through passive wave 
interference rather than the active charging of capacitors. Firing functionality has been shown 
through a nonlinear directional coupler structure, though to bridge the gap between integration and 
firing, ways to increase output power of the accumulator must be explored.  

Cascading neurons must be further explored as well. If the output of one neuron can be successfully 
used to drive the input of another, this architecture could form the basis of a fully magnonic deep 
neural network operating at orders of magnitude less power than current electronic AI hardware.  
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CODE AVAILABILITY 

All code used to run simulations is available in a GitHub repository located at 
https://github.com/SPMS01/Magnonic-Neuron. 

DECLARATION OF GENERATIVE AI 

Generative AI was used to aid in understanding unfamiliar Matplotlib functions and syntax. 
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